[Code online] DM-VIO – ICRA2022 Presentation

  • 2022.04.11
  • VIO
[Code online] DM-VIO – ICRA2022 Presentation

[Code online] DM-VIO – ICRA2022 Presentation









キレイモ

お得な特典付き!

キレイモの詳細情報はこちら
↓ ↓ ↓ ↓ ↓ ↓ ↓


通常






シースリー

お得な特典付き!

シースリーの詳細情報はこちら
↓ ↓ ↓ ↓ ↓ ↓ ↓


全身脱毛






銀座カラー

お得な特典付き!

銀座カラーの詳細情報はこちら
↓ ↓ ↓ ↓ ↓ ↓ ↓


エステ脱毛2回+医療脱毛3回






ストラッシュ

お得な特典付き!

ストラッシュの詳細情報はこちら
↓ ↓ ↓ ↓ ↓ ↓ ↓


ストラッシュ






恋肌 -こいはだ-

お得な特典付き!

恋肌の詳細情報はこちら
↓ ↓ ↓ ↓ ↓ ↓ ↓


新店舗









This is the ICRA 2022 presentation video for the paper “DM-VIO: Delayed Marginalization Visual-Inertial Odometry”. Code online at:

Project Page:

Authors:
Lukas von Stumberg
Daniel Cremers

Abstract:
We present DM-VIO, a monocular visual-inertial odometry system based on two novel techniques called delayed marginalization and pose graph bundle adjustment. DM-VIO performs photometric bundle adjustment with a dynamic weight for visual residuals. We adopt marginalization, which is a popular strategy to keep the update time constrained, but it cannot easily be reversed, and linearization points of connected variables have to be fixed. To overcome this we propose delayed marginal- ization: The idea is to maintain a second factor graph, where marginalization is delayed. This allows us to later readvance this delayed graph, yielding an updated marginalization prior with new and consistent linearization points. In addition, delayed marginalization enables us to inject IMU information into already marginalized states. This is the foundation of the proposed pose graph bundle adjustment, which we use for IMU initialization. In contrast to prior works on IMU initialization, it is able to capture the full photometric uncertainty, improving the scale estimation. In order to cope with initially unobservable scale, we continue to optimize scale and gravity direction in the main system after IMU initialization is complete. We evaluate our system on the EuRoC, TUM-VI, and 4Seasons datasets, which comprise flying drone, large-scale handheld, and automotive scenarios. Thanks to the proposed IMU initialization, our system exceeds the state of the art in visual-inertial odometry, even outperforming stereo- inertial methods while using only a single camera and IMU. The code will be published at vision.in.tum.de/dm-vio

VIOカテゴリの最新記事